Kohlenstoff und Wasserstoff aus Methan: Im Empa-Labor wird an einem Pyrolyseverfahren gearbeitet, das in einer Demonstrationsanlage im Tech Cluster Zug zum Einsatz kommen soll. Bild: Empa
Kohlenstoff und Wasserstoff aus Methan: Im Empa-Labor wird an einem Pyrolyseverfahren gearbeitet, das in einer Demonstrationsanlage im Tech Cluster Zug zum Einsatz kommen soll. Bild: Empa

Im Rahmen der neuen Empa-Forschungsinitiative «Mining the Atmosphere» verfolgen Forschende das Ziel, erneuerbare Energie im «Sonnengürtel» der Erde zu ernten, einige Male umzuwandeln und über weite Strecken dorthin zu transportieren, wo sie benötigt wird.

Die Industrie ist neben dem Gebäudepark und der Mobilität der drittgrösste Energieverbraucher der Schweiz. Insbesondere Hochtemperatur-Prozesse in der Metallverarbeitung und der chemischen Industrie, die oft mit Erdgas betrieben werden, führen zu einem Endenergieverbrauch dieses Sektors von jährlich rund 22 Terawattstunden. Gemeinsam mit dem Tech Cluster Zug, dem Kanton Zug und über einem Dutzend weiteren Partnern hat sich die Empa 2022 zum «Verein zur Dekarbonisierung der Industrie» (VzDI) zusammengeschlossen.

In diesem Rahmen wollen die Empa-Forschenden dazu beitragen, Hochtemperatur-Prozesswärme zu dekarbonisieren. «Die Dekarbonisierung nehmen wir dabei wörtlich», sagt Christian Bach, Abteilungsleiter Fahrzeugantriebssysteme der Empa. «Wir trennen durch ein Pyrolyseverfahren den Kohlenstoff im Erdgas vor der Verbrennung ab». Was bleibt, ist Wasserstoff, mit dem die industriellen Hochtemperaturprozesse betrieben werden können, und der abgetrennte Kohlenstoff in Pulverform, der für Anwendungen in der Bau- und Landwirtschaft weiterentwickelt werden soll. Eine entsprechende Demonstrationsanlage befindet sich in der Auslegungsphase und wird in den nächsten zwei Jahren in Zug aufgebaut. Der Wasserstoff wird dort dann im Emaillierungsofen der V-Zug AG genutzt.

Doppelte Sonneneinstrahlung

/documents/56164/27614961/EQ82-Pyrolyse-Gefaess-435.jpg/d8213ab6-ee9e-49a0-8d0d-e5d7c52d0a25?t=1701434082780

Verwendet man anstelle von Erdgas synthetisches Methan, dann lassen sich über den ganzen Prozess sogar negative Treibhausgasemissionen realisieren. Und zwar deshalb, weil für die Herstellung von synthetischem Methan CO2 aus der Atmosphäre entnommen wird, das nicht mehr emittiert, sondern in Form von festem Kohlenstoff zur Verfügung steht.

«Dass wir den gewaltigen Energiebedarf unserer Industrie durch eine inländische Produktion von erneuerbarem Wasserstoff oder synthetischem Methan decken können, ist allerdings nicht realistisch», sagt Bach. Der Blick richtet sich deshalb in die Wüstenregionen der Erde – dorthin also, wo im Vergleich zur Schweiz eine doppelt so hohe Sonneneinstrahlung pro Quadratmeter erfolgt.

 

Mehr Energie, weniger Emissionen

Wird nun anstelle von fossilem Erdgas erneuerbares synthetisches Methan verwendet, sinken die CO2-Emissionen tatsächlich in den negativen Bereich, allerdings steigt der Primärenergiebedarf weiter an. Die Bilanzierung beruht auf der Annahme, dass das CO2, das für die Herstellung des synthetischen Methans notwendig ist, mittels einer «Direct-Air-Capturing»-Anlage direkt aus der Atmosphäre gewonnen wird. «Dazu ist ein hoher Energieaufwand nötig», erklärt Christian Bach und nennt damit auch gleich den Grund, weshalb er sich solche Anlagen vor allem in Wüstenregionen vorstellen kann.

Kommt dazu, dass auch die Herstellung von Solar- und Windkraftanlagen mit Emissionen verbunden ist. Berücksichtigt man all diese Faktoren, resultiert bei einer direkten Nutzung von synthetischem Methan für die Erzeugung von 1 MWh Hochtemperaturwärme ein Primärenergiebedarf von 3,5 MWh und Treibhausgasemissionen von 126 kg CO2. Trennt man nun allerdings mittels Pyrolyse den Kohlenstoff vom Wasserstoff ab und nutzt nur diesen Teil energetisch, wechselt die Emissionsbilanz ins Negative: Der gesamte Prozess führt zu negativen Emissionen von -77 kg CO2 – allerdings bei einem nochmals höheren Primärenergieaufwand von 6,2 MWh.